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Abstract. An oscillator chain with dynamical traps and additive white noise is considered. Its dynamics
are studied numerically. New type nonequilibrium phase transitions are shown to arise in the case when
the trap effect is pronounced. Locally they manifest themselves in distortion of the symmetry of parti-
cle arrangement. Depending on the system parameters, the particle arrangement is characterized by the
corresponding distributions taking either a bimodal form, or a twoscale one, or a unimodal onescale form
that, however, deviates substantially from the Gaussian distribution. The particle velocities also exhibit
a number of anomalies, in particular, their distribution can be extremely wide or take a quasi-cusp form.
A large number of various cooperative structures and superstructures are found in the visualized time
patterns. In a certain sense their evolution is independent of the individual particle dynamics, enabling us
to regard them as dynamical phases.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 05.70.Fh Phase transitions: general studies

1 Introduction

Over the last few decades various phenomena caused by
ordering of noise in nonequilibrium systems have been
found (for a general review see Refs. [1–4]). Popular ex-
amples are stochastic resonance [5–7], coherence reso-
nance [2,8], noise-induced transport [9], and a number
of noise-induced phase transitions [3,10,11]. Typically
the latter phenomena are due to multiplicative noise.
However, additive noise in the presence of another mul-
tiplicative noise can also induce phase transitions [12–14]
or individually cause a hidden phase transition to become
visible [15].

The constructive role of noise is peculiar to nonequi-
librium systems only. In thermodynamic systems, for ex-
ample, phase formation is solely due to a certain regular
“force” changing its form, in particular, the number of
stationary points. The available noise mainly perturbs the
system motion around these points.

In the present paper we examine a new class of
nonequilibrium systems, namely many particle ensem-
bles where some long-lived cooperative states can form,
whereas the regular component of “individual” forces has
no anomalies. In other words, it has no stationary points
except for one corresponding to the homogeneous state
being locally stable for all the values of the system pa-
rameters. Besides this, only additive noise is present in
such systems.
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Originally the investigation of the model under
consideration was stimulated by a wide class of intricate
cooperative phenomena found in the dynamics of vehicle
ensembles moving on highways, motion of fish and bird
swarms, stock markets, etc. (for a review see Ref. [16]).
The model background is the following. People as elements
of a certain system cannot individually control all the gov-
erning parameters. Therefore one chooses a few crucial
parameters and mainly focuses attention on them. When
the equilibrium with respect to these crucial parameters is
attained the human activity slows down, retarding in turn
the system dynamics as a whole. For example, in driving a
car the control over the relative velocity is of prime impor-
tance in comparison with the correction of the headway
distance. So under normal conditions a driver should first
eliminate the relative velocity between his car and the car
ahead and only then optimize the headway.

These speculations have led us to the concept of dy-
namical traps, i.e. a certain “low” dimensional region (trap
region) in the phase space where all the main kinetic coef-
ficients exhibit an anomalous behavior [17–20]. As a re-
sult all the time scales of the system dynamics in the
trap region become large in comparison with their val-
ues outside it. The latter effect, in turn, causes long-lived
states to appear in such a system. In time patterns these
states manifest themselves in a sequence of fragments
within which at least one of the phase variables remains
approximately constant. These fragments are continuously
connected by sharp jumps of the given variable. Paper [18]
demonstrated that such long-lived states do exist in dense
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traffic flow and proposed some model of dynamical traps
to explain the observed features of car velocity time series.
Papers [19,20] simplified this model to single out the dy-
namical trap effect on its own. Similar phenomena seem to
be observed in physical systems also, for example, during
the nonmonotonic relaxation of Pd-metal alloys charged
with hydrogen [21]. Paper [19] studied a single oscillator
with dynamical traps and demonstrated numerically that
the white noise can cause the distribution function of os-
cillator position to convert from the unimodal form to the
bimodal one. It is due to the fact that inside the trap
region the regular “force” is only depressed, rather than
changing the sign, and the system motion is governed by
a random Langevin “force”. A first step towards this ef-
fect in oscillator ensembles was made in reference [20]. In
particular, dynamical traps were demonstrated to be able
to cause system instability, giving rise to an anomalous
velocity distribution like a cusp ∝ exp{−|v|} smoothed,
naturally, inside a narrow transition region. It should be
noted that similar anomalous velocity distributions were
found for dense traffic flow [22].

The purpose of the present paper is to demonstrate
that an ensemble of such oscillators with dynamical traps
can exhibit a number of anomalous cooperative phenom-
ena. Their detailed investigation will be published else-
where. However, first of all, we clarify the relation between
the specific mathematical form of the model to be studied
and the concept of dynamical traps discussed above.

Motivated behavior of particles

Keeping in mind the discussion above about human be-
havior we consider a one-dimensional ensemble of “lazy”
particles. These particles are characterized by their po-
sitions and velocities {xi, vi} as well as possessing some
motives for active behavior. Particle i “wishes” to get the
“optimal” middle position between the nearest neighbors.
So one of the stimuli for it to accelerate or decelerate is
the difference ηi = xi− 1

2 (xi−1+xi+1) provided its relative
velocity ϑi = vi − 1

2 (vi−1 + vi+1) with respect to the pair
of the nearest neighbors is sufficiently low. Otherwise, es-
pecially if particle i is currently located near the optimal
position, it has to eliminate the relative velocity ϑi, being
the other stimulus for particle i to change its state of mo-
tion. Since a particle cannot predict the dynamics of its
neighbors, it has to regard them as moving uniformly with
the current velocities. So both the stimuli determine di-
rectly its acceleration dvi/dt. The model to be formulated
in the next section combines both of these stimuli within
a linear approximation similar to (ηi + σϑi), where σ is
the relative weight of the second stimulus.

When, however, the relative velocity ϑi attains suf-
ficiently low values the current situation for particle i
cannot become worse, at least, rather fast. So in this
case particle i “prefers” not to change the state of mo-
tion and to retard the correction of its relative position.
This assumption leads to the appearance of some common
cofactor Ω(ϑi) in the governing equation like this

dvi

dt
∝ −Ω(ϑi)

(
ηi + σϑi

)
.

Fig. 1. The particle ensemble under consideration and the
structure of the phase space. The darkened region depicts the
points where the dynamical trap effect is pronounced. For the
relationship between the variables xi, vi, hi, and ϑi see formu-
lae (4) and (5).

The cofactor Ω(ϑ) has to meet the inequality Ω(ϑ) � 1
for ϑ � ϑc and Ω(ϑ) ≈ 1 when ϑ � ϑc, where ϑc is a cer-
tain critical value quantifying the particle “perception” of
speed. The inclusion of such a factor is the implementa-
tion of the dynamical trap effect. Now let us specify the
model.

2 Model

The following linear chain of N point-like particles is
considered (Fig. 1). Each internal particle i �= 1, N can
freely move along the x-axis interacting with the nearest
neighbors, namely, particles i−1 and i+1 via ideal elastic
springs with some quasi-viscous friction. The dynamics
of this particle ensemble is governed by the collection of
coupled equations

dxi

dt
= vi, (1)

dvi

dt
= −Ω(ϑi, hi)[ηi + σϑi + σ0vi] + εξi(t). (2)

Here for i = 2, 3, . . . , N − 1 the variables ηi and ϑi to be
called the symmetry distortion and the distortion rate,
respectively, are specified as

ηi = xi − 1
2
(xi−1 + xi+1), (3)

ϑi = vi − 1
2
(vi−1 + vi+1), (4)

the mean distance hi between the particles at the point xi,
by definition, is

hi =
1
2
(xi+1 − xi−1), (5)

and {ξi(t)} is the collection of mutually independent
white noise sources of unit amplitude, i.e.〈

ξi(t)
〉

= 0,
〈
ξi(t)ξi′ (t′)

〉
= δii′δ(t − t′). (6)

In addition, the parameter ε is the noise amplitude, σ
is the viscous friction coefficient of the springs, σ0 is a
small parameter that can be treated as a certain viscous
friction related to the particle motion with respect to
the given physical frame. It is introduced to prevent



I.A. Lubashevsky et al.: Long-lived states of oscillator chains with dynamical traps 65

the system motion as a whole reaching infinitely high
velocity. The symbol 〈. . .〉 denotes averaging over all the
noise realizations, δii′ and δ(t − t′) are the Kronecker
symbol and the Dirac δ-function. The factor Ω(ϑi, hi) is
due to the effect of dynamical traps and following our
previous paper [17] the Ansatz

Ω(ϑ, h) =
ϑ2 + �2(h)

ϑ2 + 1
(7)

with a function �(h) such that

�2(h) = �2 +
(
1 −�2

) h2
0

h2 + h2
0

(8)

is used. The parameter � ∈ [0.1] quantifies the dynamical
trap influence and the spatial scale h0 specifies the small
distances within which the trap effect is to be depressed,
i.e. for h � h0 the value �(h) ≈ 1 whereas when
h � h0/� the value �(h) ≈ �. If the parameter � = 1,
the dynamical traps do not exist at all, in the opposite
case, � � 1, their influence is pronounced inside a certain
neighborhood of the h-axis (trap region) whose thickness
is about unity (Fig. 1). The temporal and spatial scales
have been chosen so that the thickness of the trap region
is about unity as well as the oscillation circular frequency
is also equal to unity outside the trap region. The termi-
nal particles, i = 1 and i = N , are assumed to be fixed, i.e.

x1(t) = 0 , xN (t) = (N − 1)l, (9)
where l is the particle spacing in the homogeneous chain.
The particles are treated as mutually impermeable ones.
So when the coordinate xi and xi+1 of an internal particle
pair become identical an absolutely elastic collision is
assumed to happen, i.e. if xi(t) = xi+i(t) at a certain
time t then the timeless velocity exchange

vi(t + 0) = vi+1(t − 0),
vi+1(t + 0) = vi(t − 0) (10)

comes into being. Multiparticle collisions are ignored.
The system of equations (1)–(10) forms the model un-

der consideration.
The stationary point xst

i = (i − 1)l is stable with
respect to small perturbations. It stems from the linear
stability analysis with respect to perturbations of the form

δxi(t) ∝ exp{γt + ikl(i − 1)}, (11)
where γ is the instability increment, k is the wave num-
ber, and the symbol i denotes the imaginary unit. The
boundary conditions (9) are fulfilled by assuming the wave
number k to take the values km = πm/[(N − 1)l] for
m = ±1,±2, . . . ,±(N −2). For large values of the particle
number N the parameter k can be treated as a continu-
ous variable. Using the standard technique the system of
equations (1), (2) for perturbation (11) leads us to the fol-
lowing relation of the instability increment γ(k) and the
wave number k:

γ = −Ω0

[
1
2
σ0 + σ sin2

(kl

2

)]

+ i

√

2Ω0 sin2
(kl

2

)
− Ω2

0

[
1
2
σ0 + σ sin2

(kl

2

)]2

. (12)

In deriving expression (12) Ansatz (7) has been used, en-
abling us to set Ω0 = Ω(0, l) = �2(l). Whence it follows
that Re γ(k) > 0 for k > 0, so the homogeneous state of
the chain is stable with respect to infinitely small pertur-
bations of the particle arrangement.

3 Nonlinear dynamics

The nonlinear dynamics of the given system has been
analyzed numerically. The integration of the stochastic
differential equations (1), (2) was performed using the
E2 high order stochastic Runge-Kutta method [23] (see
also work [24]). Particle collisions were implemented an-
alyzing a linear approximation of the system dynamics
within one elementary step of the numerical procedure
and finding the time at which a collision has happened.
Then this step treated as a complex one was repeated. The
integration time step of 0.02 was used, the obtained results
were checked to be stable with respect to decreasing the
integration time step. The ensemble of 1000 particles was
studied in order to make the statistics sufficient and to
avoid a strong effect of the boundary conditions. The in-
tegration time T was chosen from 5000 to 8000 time units
in order to make calculated distributions stable. At the
initial stage all the particles were distributed uniformly
in space whereas their velocities were randomly and uni-
formly distributed within the unit interval.

The results of numerical simulation were used to
evaluate the following partial distributions

P(z) =
1

(N − 2M)(T − T0)

N−M∑

i=M

T∫

T0

dt δ(z − zi(t)), (13)

where the time dependence zi(t) describes the dynamics
of one of the variables ηi(t), ϑi(t), and vi(t) ascribed to
particle i and z is a given point of the space Rz describing
the symmetry distortion η, the distortion rate ϑ, and the
particle velocity v, respectively. The variables {η, ϑ, v} en-
able one to represent the system dynamics portrait within
the space Rη × Rϑ × Rv or its subspace N is the total
number of particles in the ensemble and M is the number
of particles located near each of its boundaries. They are
excluded from the consideration in order to weaken a pos-
sible effect of the specific boundary conditions. The same
is true of the lower boundary of time integration T0; its
value is chosen to eliminate the effect of the specific initial
conditions.

The numerical implementation of the integration over
time in expression (13) was related to the direct summa-
tion of the obtained time series, and the partition of the
corresponding space Rz was chosen so that the results be
practically independent of the cell size. The value of M
was also chosen using the result stability with respect to
the double increase in M . Typically the value M ∼ 50
was chosen for N = 1000, for N = 3, naturally, M = 1,
and T0 ∼ 500−1000.

3.1 Three particle ensemble

The given oscillator chain made of three particles is ac-
tually the system studied in part previously [17]. In this
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Fig. 2. The distribution functions of the coordinate η and the velocity ϑ of the movable particle in the 3-particle ensemble.
These distributions were obtained by averaging the simulation results over a time interval of 100 000. Solid lines correspond to
the case of strong trap effect, � = 0.1, dotted line match the absence of dynamical traps, � = 1.0. The right windows depict
some path fragment formed by the movable particle during time interval of 1000 time units. Other parameters used are ε = 0.1
and two values of the dissipation rate σ + σ0 = 0.1 (upper row) and σ + σ0 = 1.0 (lower row).

case only the middle particle is movable and the variables
η := η2 and ϑ := ϑ2 are its coordinate and velocity. Here
we also present the results for the 3-particle ensemble in
order to have a feasibility of distinguishing characteristics
of local nature from many particle effects.

Figure 2 compares the distribution functions P(η)
and P(ϑ) obtained in the cases where the dynamical trap
effect is absent (� = 1) and when the dynamical traps af-
fect the particle motion substantially (� � 1). The upper
windows correspond to the system with weak dissipation,
σ + σ0 = 0.1, whereas the lower ones are related to the
case of strong dissipation, σ + σ0 = 1.0.

In agreement with the previous results [17] it is seen
that the decrease of the parameter �, i.e. the dynami-
cal trap intensification induces the conversion of the func-
tion P(η) from the unimodal form to the bimodal one,
with the dissipation no more then weakening this effect.
A new result is the essential dependence of the velocity
distribution on the dissipation rate. In the case of weak
dissipation the movable particle performs alternately fast
motions outside the trap region and slow motion inside
it. The fast motion paths connect the neighborhoods Q−,
Q+ of the P(η)-function maxima, whereas the slow mo-
tion arises when the particle wanders inside these re-
gions. This feature is visualized in Figure 2, the right
upper window shows a fragment of the particle path of
duration about 1000 time units. Therefore the obtained
distribution function P(ϑ) as seen in Figure 2 (middle
upper window) is actually made of two monoscale com-
ponents. For the case of strong dissipation the two neigh-
borhoods Q− and Q+ are not directly connected by the
fast motion paths (Fig. 2, right lower window). Now they

Fig. 3. An example of the velocity distribution P(ϑ) formed by
the movable particle of the 3-particle ensemble without noise
and dissipation (ε = 0 and σ = 0). The path on the phase
plane {η, ϑ} formed by this particle is shown in the inset. In
numerical simulation � = 0.1 was used and a phase path of
the velocity amplitude about unity was chosen.

rather uniformly spread over a certain domain on the
{η, ϑ}-plane, previously, they were located inside a suf-
ficiently narrow layer. As a result the velocity distribution
converts into a monoscale function having a quasi-cusp
form ∝ exp{−|ϑ|}. We relate the cusp formation to the
properties of the system dynamics near the trap region. It
is justified in Figure 3 showing the resulting velocity distri-
bution of the movable particle when noise and dissipation
are absent. In this case the 3-particle system admits con-
servation of a certain “energy” and the phase paths form
a collection of closed curves on the {η, ϑ}-plane [17].

If the dynamical trap effect is absent, � = 1, all these
distributions, as must be the case, are of the Gaussian
form shown in Figure 2 with dotted lines.
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Fig. 4. The distribution functions of the symmetry distortion η and the distortion rate ϑ for the 1000 particle ensemble with
low (l = 50, label 1) and high (l = 5, label 2) density and weak (σ ≈ 0.1) and strong (σ ≈ 1.0) dissipation. The right four
windows depict characteristic path fragments of duration of 1000 time units formed by a single particle with index i = 500
on the phase plane {η, ϑ} which was chosen due to its middle in the given ensemble. The other parameters used are the noise
amplitude ε = 0.1, the trap effect measure � = 0.1, the small regularization friction coefficient σ0 = 0.01 and the regularization
spatial scale h0 = 0.25. The time interval within which the data were averaged changed from 2000 to 5000 in order to make the
obtained distributions stable.

3.2 Multi-particle ensemble

To analyze cooperative phenomena arising in such systems
the dynamics of 1000-particle ensembles was implemented.
Let us, first, consider local properties exhibited by these
ensembles. The term “local” means that the correspond-
ing state variable can take practically independent values
when the particle index i changes by one or two. The vari-
able ηi (expression (3)) may be regarded in such a man-
ner. It describes the symmetry of particle arrangement in
space, when ηi = 0 particle i takes the middle position
between the nearest neighbors, particles i − 1 and i + 1.
A nonzero value of ηi denotes its deviation from this po-
sition, in other words, a local distortion of the ensemble
symmetry. The latter was the reason for the used name of
the variables ηi as well as the variables ϑi = dηi/dt.

Figure 4 exhibits the distribution of the variables η
and ϑ depending on the dissipation rate σ and the ini-
tial distance l between particles, i.e. their mean density.
Comparison of Figure 2 and Figure 4 shows us that in this
case of weak dissipation the distribution functions of the
symmetry distortion P(η) and the distortion rate P(ϑ)
are qualitatively similar to those of the corresponding
3-particle ensemble. Only a few new features appear. First,
for the system with high particle density (l = 5) a small
spike is visible at the center, η = 0, of the distribution
function P(η), which is pronounced in the case of strong
dissipation. It corresponds to the symmetrical state of the

particle ensemble being stable without dynamical traps
and is destroyed for the 3-particle ensemble. In the given
case “many-particle” effects seem to reconstruct it in part.
So in the given case the particle arrangement is charac-
terized by three states, two of them match the extrema of
the distribution function P(η) and the symmetrical state
singled out to a some degree.

As for the 3-particle ensemble the distortion rate dis-
tribution is again composed of two monoscale components,
narrow and wide ones. Previously we have related them
to the fast and slow motions. Figure 4 (upper second win-
dow) also justifies this. The narrow component is due to
the particle motion inside the trap region and should be
practically independent of the mean distance between par-
ticles. By contrast, the wide one depends remarkably on
the particle density because it matches the fast motion
of particles outside the trap region and, thus, has to be
affected by their relative dynamics. Exactly this effect is
demonstrated in Figure 4 visualizing also the correspond-
ing properties of the particle paths.

For the 1000-particle ensemble with strong dissipa-
tion, σ ≈ 1.0, the situation changes dramatically, although
the characteristic scales of the corresponding distributions
turn out to be of the same order in magnitude. In the
given case the distribution function P(η) of the symme-
try distortion has only one maximum at η = 0, however,
its form is characterized by two scales. In other words,
it looks like a sum of two monoscale components. One of
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Fig. 5. The distribution functions of the particle velocities and the characteristic time patterns formed by the velocity variations
of the 500-th particle. Dynamics of the 1000-particle ensemble with low (l = 50, label 1) and high (l = 5, label 2) mean density
and weak (σ ≈ 0.1) and strong (σ ≈ 1.0) dissipation was implemented for the calculation time up to 8000 time units to make the
obtained distributions stable with respect to time increase. The rightmost panels visualize the time patterns formed by 200 paths
of particle motion during 1000 time units and chosen in the middle of the given ensemble. Here the curve thickness has been
chosen so that the apparent color can depict local variations in the path spacing due to changes either in the particle density or
in the velocities of cooperative particle motion (in this way the different long-lived states of the given particle ensemble become
apparent). The other parameters used are the noise amplitude ε = 0.1, the trap effect measure � = 0.1, the small regularization
friction coefficient σ0 = 0.01 and the regularization spatial scale h0 = 0.25.

them is sufficiently wide, its thickness is about the same
value that is obtained for the corresponding particle en-
semble with weak dissipation. This component exhibits a
remarkable dependence on the particle density, enabling
us to relate it to the particle motion outside the trap re-
gion. The other is characterized by an extremely narrow
and sharp form shown in detail in the inner window in
Figure 4 for the dense particle ensemble. Its sharpness
leads us to the assumption that “many-particle” effects in
such systems with dynamical traps cause the symmetrical
state to be singled out from the other possible states in
the system properties.

By contrast, the distortion rate behaves similarly to
the previous case except for some details. When the mean
particle density is high (l = 5) the wide component of
the distortion rate distribution disappears and only the
narrow one remains, with the latter having a quasi-cusp
form ∝ exp{−|ϑ|}. For the system with low density the
peak of the distortion rate distribution splits into two
small spikes.

These features can be explained by referring to the
low row right windows in Figure 4, which exhibit typi-
cal path fragments formed by motion of a single particle
on the {ηϑ}-plane. Roughly speaking, now three motion
types can be singled out: some stagnation inside a narrow
neighborhood of the origin {η = 0 , ϑ = 0} (clearly visible
in the right window), slow wandering inside the trap region

that, on average, follows a line with a finite positive slope
(visible in the left window), and the fast motion outside
the trap region (visible again in the left window). The fast
motion fragments typically stem from an arbitrary point of
the low motion region and lead to a certain neighborhood
of the origin. It seems that the systems with low density
particles have the possibility to go sufficiently far from the
origin that during the fast motion come into the stagna-
tion region rarely. As a result, first, the distortion rate
distribution function is of a two scale form and contains
two spikes on the peak. In the case of high density the fast
motion is depressed substantially and the system migrates
mainly in the slow motion region entering the stagnation
region many times. So the distortion rate distribution con-
verts into a single-scale function and the symmetric state
occurs often, giving rise to a significant sharp component
of the distortion distribution located near the point η = 0.

Now we discuss the nonlocal characteristics of the
100-particle ensembles. Figure 5 depicts the velocity dis-
tributions. As is seen it depends essentially on both the
parameters, the mean particle density and the dissipation
rate. When the mean particle density is low and the dis-
sipation is weak (l = 50 and σ ≈ 0.1) the velocity distri-
bution is practically of Gaussian form, however, its width
gets extremely large values about 10. We recall that with-
out dynamical traps the width of the corresponding distri-
bution does not exceed 0.5 (Fig. 2). The tenfold increase
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of the particle density, l : 50 �→ 5, shrinks the velocity
distribution to the same order and its scale get values
similar to that of the distortion rate distribution in mag-
nitude. However in this case the form of the velocity dis-
tribution is a monoscale function of the well pronounced
cusp form ∝ exp{−|v|}. In the case of strong dissipation
(σ ≈ 1.0) the situation is opposite. The system with low
density (l = 50), as previously, is characterized by an ex-
tremely wide velocity distribution, its width is about 10.
However, now its form deviates substantially from the
Gaussian one. For the corresponding ensemble with high
density (l = 5) the velocity distribution is Gaussian with
width about 1. The latter, nevertheless, is much larger
then the same width in the absence of dynamical traps.

These features of the velocity distribution character-
izes the cooperative behavior of particles rather then
their individual dynamics. In other words, there should
be strong correlations in the motion of not only neighbor-
ing particles but also distant ones. Therefore the velocity
variations responsible for the formation of such distribu-
tions describe in fact the motion of multiparticle clusters.
To justify this we refer to the middle column windows in
Figure 5. They demonstrate some typical fragments of the
time patterns formed by the velocities of individual par-
ticles. When the mean particle density is low (l = 50),
these patterns look like a sequence of fragments {vα} in-
side which the particle velocity varies in the vicinity of
some level vα. The values {vα} are rather randomly dis-
tributed inside a certain region of thickness V ∼ 10 in
the vicinity of v = 0. The continuous transitions between
these fragments occur via sharp jumps. The typical dura-
tion of these fragments is about T ∼ 100, which enables
us to regard them as long-lived states because the tempo-
ral scales of individual particle dynamics are about several
units. Moreover, these long-lived states can persist only if
a group of many particles moves as a whole because the
characteristic distance L individually traveled by a parti-
cle involved in such state is about L ∼ V T ∼ 1000 � l.

The spatial structure of these cooperative states is vi-
sualized in Figure 5, right column windows. They depict
time patterns formed by paths {xi(t)} of 200 particles of
duration about 1000 time units. These particles were cho-
sen in the middle part of the 1000-particle ensembles with
low density. For high density ensembles such patterns also
develop but are not so pronounced. As is seen a large num-
ber of different mesoscopic states formed in these systems.
They differ from one another in size, the direction of mo-
tion, the speed, the life time, etc. Moreover, the life time
of such a state can be much longer then the characteristic
time interval during which particles forming it currently
will belong to this state individually. Besides, the patterns
found could be classified as hierarchical structures. Some
relatively small domains formed by cooperative motion of
individual particles in their turn make up together larger
superstructures. In other words, the observed long-lived
cooperative states have their “own” life independent, in
some sense, of the individual particle dynamics. The lat-
ter properties are the reason for regarding them as certain
dynamical phases arising in the systems under consider-

ation due to the dynamical traps affecting the individual
particle motion. The term “dynamical” has been used to
underline that the complex cooperative motion of parti-
cles is responsible for these long-lived states, without the
continuous particle motion such states cannot exist.

The results obtained are summarized in the following
section.

4 Conclusion

A rather simple model of an oscillator chain, a one-dimen-
sional particle ensemble, with dynamical traps and addi-
tive white noise has been considered. It should be noted
that the regular “force” governing the individual dynamics
of particles has no stationary points except for one match-
ing the system homogeneous state. The latter is locally
stable for all the possible values of the system parame-
ters. Nevertheless, as has been demonstrated numerically,
the sufficiently strong dynamical trap effect accompanied
with white noise gives rise to a wide variety of anomalous
and cooperative phenomena.

In particular, the local symmetry of particle arrange-
ment (described by variables (3) called the symmetry dis-
tortion) can exhibit kinetic phase transitions. Depending
on the mean particle density and the dissipation rate the
distribution function of the symmetry distortion takes ei-
ther a bimodal form or a twoscale unimodal form, with the
latter possessing an extremely sharp spike (Fig. 4). The
distortion rate distribution is also either characterized by
two scales or is of the cusp form ∝ exp{−|ϑ|} smoothed,
naturally, inside a narrow transition region.

The cooperative phenomena arising in these systems
have been studied analyzing the velocity distributions and
visualizing some time pattern formed by the particle dy-
namics. When the mean particle density is sufficiently
low the velocity distributions are characterized by the ex-
tremely large widths. For the system with high density
and low dissipation the velocity distribution function takes
also a quasi-cusp form. The visualized time pattern of the
velocity dynamics of a single particle has demonstrated
the presence of the long-lived states. They look like a se-
quence of fragments {vα} within which the particle ve-
locity varies in the vicinity of some level vα continuously
joined by sharp jumps in the particle velocity. The velocity
levels are rather uniformly distributed inside a wide inter-
val and the life time of these fragments exceeds essentially
the time scales of the individual dynamics of particles. It
has been shown that such long-lived states can persist if
only multiparticle clusters moving as a whole are formed.

The visualized patterns made up of paths of 200 par-
ticles have shown also the presence of such cooperative
structures. Moreover it has become clear that these long-
lived states persist independently in some sense of the
individual dynamics of particles forming them currently.
In other words, the life time of such a state can exceed
substantially the time interval during which the particles
forming it at a current time belong to it. Keeping the lat-
ter in mind we refer to them as to dynamical states. These
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states in turn can form superstructures, so the observed
patterns are classified as hierarchical structures.

In a rough approximation these dynamical structures
could be compared with ones observed in the classical
chains of interacting particles governed, for example, by
the φ4-potential. The latter structures are formed by kinks
– topological excitations of a certain fixed form that ap-
pear, move, and disappear, which endows the apparent
structures with dynamics (see, e.g. Refs. [25–28]). Prelim-
inary results have demonstrated to us that in the oscil-
lator chain with dynamical traps similar quasi-kinks can
have rather arbitrary shapes and, moreover, form a hierar-
chical structures. However a detailed comparison of these
systems requires an individual consideration.
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